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Abstract— Fluctuations are inherent to any fabrication process.
Integrated circuits and micro-electro-mechanical systems are
particularly affected by these variations, and due to high quality
requirements the effect on the devices’ performance has to be
understood quantitatively. In recent years it has become possible
to model the performance of such complex systems on the basis
of design specifications, and model-based Sensitivity Analysis
has made its way into industrial engineering. We show how an
efficient Bayesian approach, using a Gaussian process prior, can
replace the commonly used brute-force Monte Carlo scheme,
making it possible to apply the analysis to computationally costly
models. We introduce a number of global, statistically justified
sensitivity measures for design analysis and optimization. Two
models of integrated systems serve us as case studies to introduce
the analysis and to assess its convergence properties. We show
that the Bayesian Monte Carlo scheme can save costly simulation
runs and can ensure a reliable accuracy of the analysis.

I. INTRODUCTION

Before computational power was widely available, only
relatively simple models were used in the design process of
technical systems. Simple models require a deep understanding
of the considered system as they need to be based on very
specific assumptions, and one has to identify beforehand
what question they are to answer. Today, however, simulation
techniques exist which model all relevant features of a system,
including geometrical properties, electrical and thermal aspects
(finite element models) and circuit simulations. Such models
are constructed as one-to-one emulations using powerful simu-
lation tools, and do not necessarily lead themselves to a better
understanding of the system—they are designed as virtual
counterparts of the real system and mimic their behavior. The
purpose of such models is to replace experimental specimens
which can be extremely expensive and time-consuming in their
fabrication.

Variations during production are inevitable in any process.
Especially in the fabrication of integrated systems, these
tolerances may not be small in comparison to the dimensions
of the devices and may thus have a significant effect on the
functionality of the product. Therefore the performance of the
product will vary from device to device. High quality standards
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require the characteristics of a product to lie within a small
tolerance window. Therefore the main task of simulation in
this field is to assess and optimize the robustness of the design
against processes inherent variations.

Computer models which simulate the behavior of a device
can be seen as a deterministic mapping from the specifications
of the system (input parameters) to its properties (output
parameters). The techniques to estimate the variation in the
output are studied in the so-called Uncertainty or Sensitivity
Analysis, by combining the deterministic computer model and
the distributions of the input parameters.

The most direct way to do Sensitivity Analysis is the
Monte Carlo (MC) method. MC is very simple to implement
but may be computationally costly: MC draws a number of
random input parameters from their distribution and runs the
simulation code on each setting. The outputs resemble the
attributes of a family of devices which leave the production
line. If the computational cost of the computer model is small
the model can be evaluated at a great number of parameter
settings and MC is the method of choice. However, if one run
of a complex model takes several minutes or even hours, we
need to avoid an excessive number of runs. Furthermore, an
MC analysis has to be repeated a number of times in order to
calculate sensible measures. The gathered data can hardly be
re-used if the settings change.

In this work we present a new technique which uses
the available simulation runs more efficiently than MC ap-
proaches. The method lets the designer re-use the data in a
consequent analysis. This is achieved by applying a state-of-
the-art algorithm from Machine Learning to learn an emulation
of the computer model. While the methods for function
estimation are well-known, our contribution is their adaption
to design analysis and optimization. We define statistically
justified measures for the sensitivity of designs, which ease
the assessment of high-dimensional, nonlinear models. The
sensitivity measures can be computed in closed form for most
relevant input distributions—including derivatives with respect
to specifications. This makes it possible to use them in an
automatic design optimization.

In the spirit of a method first introduced by Haylock and
O’Hagan [7], we describe a Bayesian Sensitivity Analysis
which uses a Gaussian process (GP) prior. GPs are long known
as flexible nonparametric models for high-dimensional regres-
sion [26]. They have been used as fast surrogates (response
surfaces) of expensive computer code in a number of previous
works [2], [7], [16], [17], [25], [32], [22]. By using GP models
in our evaluation, we assume that the simulation output is a
smooth function of the input parameters.
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The Bayesian scheme is separated into two independent
steps. Using previous simulation runs we build an a-posteriori
Gaussian process model of the computer code in a first step.
The analysis, as a following second step, is independent of the
computer model itself and uses only the fast GP surrogate for
the model. Therefore the analysis can be done in little time and
independently of expensive simulation software, thus saving
resources and labor time. The GP meta-model can be tested
using e.g. a cross validation scheme, facilitating an improved
reliability of the analysis.

Antreich et al. [1] and Sapatnekar et al. [29] propose
geometric optimization methods for design-centering, which
approximate the feasibility region and the input distributions.
In contrast, our approach treats the fluctuations of the input
parameters exactly to define appropriate sensitivity measures.
It uses the approximative GP model to compute them effi-
ciently. Response surface methods (RSM) [13] are strongly
related to our approach. Previous works reporting on design
optimization with RSM [8], [5] use linear or quadratic fits.
Dealing with complex models, these parametric fits can only
be used as local approximations. Our approach generalizes the
idea by using nonparametric GP regression, which can be used
to estimate the function globally.

To evaluate the method we use two fully featured models of
electro-mechanical systems. Our high-dimensional examples
represent a pressure sensor and an accelerometer, which are
defined by 28 and 29 uncertain input parameters. We show
that the proposed scheme can lead to a significant saving of
simulation runs, and that it can help to re-use valuable data in
several design studies.

In Section II we address the definition of sensitivity mea-
sures for a model-based assessment of designs. We use a real-
world design study to exemplify the proposed design analysis.
The Monte Carlo approach is the standard method to com-
pute these quantities. We propose to use instead a Bayesian
quadrature1 using Gaussian process regression, and describe
both in Section III. We compare the efficiency of the Bayesian
approach to the classical MC method with Latin-Hypercube
sampling. In Section IV we compare the convergence rates
in an empirical analysis, using the mentioned sensor models
and a synthetic benchmark problem. Section V closes with a
synopsis of the results.

II. SENSITIVITY ANALYSIS FOR DESIGN ASSESSMENT

Sensitivity Analysis addresses the qualitative (screening)
and quantitative study of how influential input parameters
are in nonlinear mathematical models. A Sensitivity Analysis
is often performed to assess the stability of a system with
respect to small disturbances. In design analysis, however, the
fluctuations in the parameters are not necessarily small.

One distinguishes local and global measures for sensitivity
[27], [28]. Local measures are mostly based on partial deriva-
tives or use some kind of parametric response surface (linear or
quadratic approximation). We can certainly use local measures
if we deal with small disturbances. However, we are forced to

1Quadrature is the classical term for approximate integration.

use a global criterion if the support of the input distribution
p(x) is not small enough to neglect high order terms.

Accordingly Saltelli [27] defines a global method to have
two basic properties: The inclusion of the influence of the
scale and shape of p(x) and a multidimensional averaging by
a joint variation of all parameters.

In II-A we propose a number of global measures which
are useful in design analysis. To motivate these, we start
by introducing the standardized regression coefficients as a
prominent local measure. In II-B we show how the Sensitivity
Analysis can be used in practice, reproducing the analysis for
the electro-mechanical pressure sensor.

A. Measures for the robustness of a design

a) Local measures: For underlying models which are
approximately linear over the support of p(x),

f(x) ≈ flin(x) = ao +
∑

`

a`x` , (1)

the standardized regression coefficients (SRCs) [27] are a
common measure for sensitivity. Under the assumption that
the inputs are normally distributed, p(x) =

∏
` p`(x`) =∏

`N (x`|x̂`, σ
2
` ), the output distribution px(flin) is also nor-

mal. The variance can be decomposed into independent con-
tributions from each input parameter: varx [flin] =

∑
` a2

`σ
2
` .

The SRCs are defined as the relative shares of the variance
due to fluctuations in single parameters:

SRC` =
varx [flin|fix all inputs but x`]

varx [flin]
=

a2
`σ

2
`

varx [flin]
. (2)

A linear fit of f can be computed using few function
evaluations, which makes the SRCs a popular and robust
first estimate in model based sensitivity estimation. For the
evaluation of MEMS it has been proposed by [31] and [4].

b) Global measures: According to [27] global measures
are necessarily some kind of average over the joint distribution
of input parameters p(x):

I [f ] =
∫

dx p(x) F [f(x)] , (3)

where F is some functional of the output f .
The parametric yield is certainly the most important mea-

sure for the robustness of a design with respect to fluctuations
in the manufacturing process. It is by definition the fraction
of outputs f(x) which, according to p(x), lies within a given
tolerance interval Itol = [fmin, fmax]:

Yield [f ] =
∫

dx p(x)
{

1 for f(x) ∈ Itol

0 f(x) /∈ Itol
(4)

Using the parametric yield we can immediately define a
measure of impact for single input parameters. We define the
yield gain as the increase in the parametric yield, obtained by
a perfect control of a parameter to its nominal value x̂`:

∆Y` = Yield [f |where x` = x̂`]− Yield [f ] . (5)

If the output distribution px(f) is approximately normal, it
can be summarized by its mean and variance which are given
by the integrals
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Fig. 1. Design analysis (PS model) for the most influential design parameters. Panel (a): The correlation ratios CR include all effects, their local counterparts
LCR are computed only along the axis. The SRC are based on a linear model. Panel (b): The matrix elements (numbers and gray shades) are the cross
correlation ratios CCR. They measure the importance of mixed terms.

meanx[f ] =
∫

dx p(x) f(x) (6a)

varx[f ] =
∫

dx p(x) f2(x) −meanx[f ]2 . (6b)

Variance based measures for sensitivity are widely used to
measure the impact of input parameters.

As a generalization of the SRCs (2) to nonlinear mappings
we define the coefficients

CR` =
varx [f ]− varx [f |x` = x̂`]

varx [f ]
, (7)

where x̂ is the nominal parameter setting. We will refer to
these parameters as the correlation ratios (CR), in allusion to
a similar definition in [12]. Just as the SRCs, the CR` measure
by which fraction the variance of f can be reduced by a perfect
control of x`. Oakley and O’Hagan [17] use slightly different
measures, as they consider cases in which no sensible nominal
value can be defined.

The CRs measure the average influence of a single param-
eter over the complete distribution p(x). When the inputs are
not correlated, i.e. p(x) =

∏
` p(x`), the CRs are independent

of the fluctuations in other parameters if f is additive, f(x) =∑
` f`(x`), or even linear. However, mixed terms can lead to

a mutual interaction of the parameters. Consider, for example,
the term xix`. For xi = x̂i = 0 the impact of x` is zero, for
fluctuating xi, however, not necessarily.

To measure the importance of these cross terms in the CRs,
we define the local correlation ratios

LCR` =
varx [f |xi = x̂i ∀ i 6= `]

varx [f ]
, (8)

which do not include such terms: The average is taken only
along the axis of the considered parameter. To be able to
assign the cross terms to pairs of parameters, we define cross
correlation ratios (CCRs)

CCRi` = CCR`i = CRi − CRi (x` = x̂`) , (9)

which reveal how strongly two parameters are linked. The
definition (9) is intuitively clear: It measures the change of
CRi as we fix parameter x` to its nominal value. Where mixed
terms can be neglected, we have CRi = CRi (x` = x̂`) and

the cross terms are zero. If two parameters xi and x` are
maximally correlated through f , we have CCRi` = CCR`` =
CR` = CCRii = CRi.

In the analysis of our designs we use plots which combine
all four measures, SRC (2), CR (7) , LCR (8) and CCR (9)
to indicate the effects which dominate the model.

B. Case study: Use in practice

To motivate the use of the above sensitivity measures we
exemplify the Sensitivity Analysis in the following paragraph.
We have performed the analysis using the Bayesian Monte
Carlo Method, which we explain in detail in Section III. The
case study reproduces the model-based design analysis of an
electro-mechanical pressure sensor, in development at Robert
Bosch GmbH. Note that we have anonymized the model by
normalizing outputs and renaming all input parameters.

1) Model 1, Pressure Sensor: The model stems from the de-
sign analysis of a pressure sensor (PS) and covers all relevant
mechanical and electrical properties of the system. A finite
element model of the mechanical configuration reproduces
the deformation of the device due to the applied pressure.
The mechanical module has a number of parameters which
represent the geometrical dimensions. The deformations are in
turn converted into electrical signals. The output of the model
is a temperature and pressure dependent electrical signal, for
which a last module calculates significant characteristics such
as the accuracy of the device. The model has 28 parameters in
total, for which typical fluctuations in the production process
are known.

One model run requires approximately 2min on a 2GHz
CPU. An exhaustive MC analysis requires thousands of func-
tion evaluations and can therefore not be under consideration
for a variety of design alternatives. According to the proba-
bilistic error bound of the MC method we would need 5000
samples for an accuracy of 1.5% in the mean estimate.

Instead, the Bayesian Monte Carlo approach uses a Gaussian
process meta-model which is trained and tested on comparably
few simulation runs. We have used a 500 points-Latin Hyper-
cube design from p(x) for training. To calculate an estimate
of the model accuracy we have used a separate test set of
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Fig. 2. Design study (PS model): The plots (a) and (b) show the robustness of the design for varying nominal parameters P6E and P79. Shown are the
mean output with ±σ confidence interval (shaded area) and the output variation (thick lines at ±stdx[f ]). Plot (c) shows the output variation stdx[f ] against
nominal values for P79 and P6E. Note that the settings can be adjusted as to minimize the global uncertainty.

1000 samples. Note that a test set is not necessary if cross
validation is used. The square root of the mean square error
on the test set was 1.3% of std[f(Xtest)], thus ensuring a good
accuracy of the GP-meta model. One can easily verify that
the accuracy of the estimated CRs is of the same order as the
maximal squared error of the regression model.

2) Verification of a fixed design: The plots in Figure 1
combine several sensitivity measures to provide a condensed
and comprehensive picture of the parameters’ role. Since the
Bayesian Sensitivity Analysis uses a fast GP emulator of
the computer code, we can calculate these characteristics for
varying designs within seconds.

The difference between the CRs and SRCs indicates the im-
portance of nonlinear effects to the design engineer. Nonlinear
effects are apparently responsible for most variation caused by
parameter P79 in the PS model. The lower part of the bars,
shaded in a lighter gray, shows the local correlation ratios
LCR. The difference to the global CRs indicates what fraction
of the impact is induced by cross effects or dependencies to
other parameters.

These cross effects are broken down by the CCR matrix,
which is shown in plot 1(b). The CRs can be found on the
diagonal and the CCRs are placed off the diagonal, indicating
the interdependencies between pairs of parameters. Note, for
example, that the first two parameters, P6E and P79, affect the
output jointly.

The above variance measures are based on the assumption
that the output distribution is approximately normal. In general
these coefficients only estimate the width of the distribution.
The parametric yield (4) or the potential yield improvements
∆Y (5) can be computed to assess the absolute sensitivity of
the design.

3) Parameter studies and design optimization: The mean
output and the output variation depend on the tolerances of
the input parameters as well as on their nominal values. The
dependence of the output variation on the design parameters
is frequently studied in the designing process. The design
parameters can often be chosen freely within some interval
and should be set to values where the output fluctuations are
minimal. Tolerances are an important expense factor in the
manufacturing process, and therefore it is also worthwhile to
study their effect on the output fluctuations quantitatively.

Using the MC method, one complete analysis has to be
performed for each setting of design parameters, nominal val-
ues, and tolerances. The GP regression, which we propose to
use as an intermediate step, lets the developer investigate such
dependencies independently of the computer model without
the need to wait for simulation runs.

Figure 2 shows exemplary parameter studies for the PS
model. In 2(a) and 2(b) we have plotted the mean output,
the predictive uncertainty, and the output fluctuations against
the nominal parameter. In agreement to the large difference
between the SRC and CR given in Figure 1, we find the
dependencies to be highly nonlinear. The output variation is
not constant over the parameter settings, and we find in plot
2(c) that it can be minimized by adjusting the nominal values.

As all parameters of the BMC analysis are given as an-
alytically manageable functions, we can derive all necessary
derivatives to use a gradient based optimization scheme.

III. BAYESIAN MONTE CARLO USING
GAUSSIAN PROCESS PRIORS

In the above section we have derived and motivated a num-
ber of global sensitivity measures. In the following we show
how these can be computed accurately from few simulation
runs. We briefly introduce the traditional MC method in III-
A, which uses simple estimates. The Bayesian Monte Carlo
method, which makes more efficient use of the data by using
a Gaussian process prior, is presented in III-B.

A. Monte Carlo Methods

In general—especially if f is represented by a complex
computer code—integrals of type (3) cannot be evaluated an-
alytically and we have to resort to numerical approximations.
Classical methods like the trapezoidal rule are not applicable
for high dimensional input spaces RD: The quadrature error
scales as O(N−2/D)—for F ∈ C2 and N being the number
of nodes. Monte Carlo (MC) methods, in contrast, lead to a
probabilistic error bound of O(N−1/2) which is independent
of the input dimension [15].

The basic idea of Monte Carlo methods is to draw a finite
number of N samples x1 . . .xN from p(x) and to use the
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f(x) directly, and then computes its distribution.
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Fig. 3. Univariate illustration. Both, MC and BMC estimate Ex[f ] and varx[f ] from evaluations of f at single points x. Panel (a) shows f(x) at 10
random samples ’+’ from a Gaussian input distribution p(x) ’· · · ’. The MC method uses the samples f(x) via empirical estimates (10). See the corresponding
histogram and the empirical Gaussian approximation to px(f) ’—’ in (b). In contrast, BMC uses the samples to directly estimate f and computes meanx[f ]
and varx[f ] on the basis of this approximation. Panel (c) shows the samples from (a) ’+’, with the 2σ confidence interval for f (gray) and function samples
from the posterior ’—’.

empirical mean

I [f ] ≈ 1
N

∑
`

F [f(x`)] (10)

as an unbiased estimator of the expectation in (3). The
average error and the probabilistic bound are guaranteed by
the strong law of large numbers and the central limit theorem,
independently of F [f ].

In the simplest case independent random samples from p(x)
are used, more sophisticated Quasi Monte Carlo methods use
e.g. Latin Hypercube designs [11] or Sobol lattices [30]. Quasi
Monte Carlo methods basically lead to improved space filling.
In this paper we use the Latin Hypercube technique.

The error bound O(N−1/2) for MC methods holds for
a very broad class of functions, requiring only square-
integrability. While this can be seen as an advantage, it is clear
that for highly regular functions relatively few nodes should
be necessary to approximate the integral. Therefore it can be
worthwhile to reflect this regularity in a quadrature rule.

B. Bayesian Monte Carlo
Monte Carlo methods—including improved Quasi MC

methods like Latin Hypercube—directly estimate the averages
by empirical sums (10). The Bayesian MC method uses an
indirect estimate, where the underlying function f is modeled
using a GP.

GPs have repeatedly been proposed as a replacement for
parametric response surfaces: As GPs are nonparametric mod-
els, they can adapt to the output most of computer models over
a large range of input parameters. Using the GP model, the
available simulation data can be used efficiently to approxi-
mate the function. All measures can subsequently be computed
using this approximation:

Bayesian Monte Carlo
A Generate Data. Choose a design X = (x1 . . .xN )T

in the region of interest and evaluate the function
f at these inputs: y = (f(x1) . . . f(xN ))T .

B GP regression. Use the data D = {X,y} to calculate
a GP fit p(f |D). The model can be verified using a
separate test set or cross validation.

C Sensitivity Analysis. Any analysis can be performed
using the GP emulation of f . The integrals
I[f ] (3) are estimated using the GP fit.

The underlying idea is relatively general and applies also to
other frameworks: The computer code is emulated efficiently
using the GP model, which can be used for all further analysis.

Find a simple univariate example in Figure 3. Panel (a)
displays 10 evaluations of a function f(x`) at inputs x1 . . . x10,
which are randomly drawn from p(x). The MC estimate (panel
b) uses the samples f(x`) to compute meanx[f ] and varx[f ]
directly. The BMC method uses the given data to estimate the
function f . In panel (c) we have displayed this estimate by
showing the 2σ confidence interval for f together with samples
from the posterior distribution. Using this approximation,
meanx[f ] and varx[f ] can be computed analytically.

The following overview over GP models gives some insight
into the basic assumptions and the mathematical framework.
As GPs are now a well-known tool in Machine Learning,
implementations of the described fitting procedure are avail-
able [21]. The complexity of the GP fit is O(N3), and does
not directly depend on the dimensionality of the input space
D. Applications with hundreds of input parameters have been
considered in the Machine Learning literature.

We explain BMC by going through each step of the method:
In III-B.1 we introduce the GP model, and in III-B.2 we
describe how the model is used to infer the underlying function
from single measurements. III-B.3 explains how remaining
parameters are fitted using the maximum likelihood method
of type II.

Once the GP estimate to f is available, the sensitivity
measures can be computed analytically (III-B.4). Note, that
using the available software, an implementation of the BMC
method requires only the coding of the equations (22) given
in the appendix.

1) The Gaussian process model: GPs have been intro-
duced by Sacks and Ylvisaker [26] to model systematic
deviations from parametric models by considering correlated
errors. O’Hagan [18] derived them as localized linear models.
Both interpretations emphasize the nonparametric nature of
GPs, which can overcome intrinsic problems of parametric
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measures the smoothness of the function via the decay of correlations between the function values. The univariate example is equivalent to a multivariate
model projected onto one axis. The GP model is not restricted to a finite number of basis functions, it models the function’s smoothness via (13).

models. Parametric models are of limited use especially in
high dimensional spaces—e.g. when complex computer code
is modeled [25].

A comprehensive treatment of the GP model is out of the
scope of this work, and we refer to [24] for more details. How-
ever, a Matlab implementation for GP regression is available
electronically at [21], and the BMC method can therefore be
implemented easily.

Assume we model a mapping f from the input parameters
x ∈ RD to an output f(x) ∈ R. Gaussian processes extend
parametric models by allowing for systematic deviations from
a (parameterized, e.g. linear) mean function

E[f(x)] = µ(x) . (11a)

When the deviations from the mean function are systematic,
they show correlations which are described by a fixed covari-
ance structure

cov [f(x), f(x̄)] = k(x, x̄) . (11b)

For notational simplicity we set the mean function to zero
in the following, and concentrate on the structure of the
deviations. Subsequently we discuss how to re-introduce the
mean function to the Sensitivity Analysis.

GPs can be seen as a generalization of the well-known
linear model [3]. In the following lines we briefly illustrate this
connection to motivate the assumptions, which are introduced
by the choice of the covariance function. In the linear model
we assume

f(x) =
k∑

`=1

α`φ`(x) = αT φ(x) , (12a)

where the φ(x) = (φ1(x), . . . φk(x))T are k basis functions,
and the α = (α1, . . . αk)T are the corresponding coefficients.

The αs are usually assigned a Gaussian prior, α` ∼
N (0, w2

o), which leads to

Eα[f(x)] = Eα

[
αT φ(x)

]
= 0 (12b)

Eα[f(x), f(x̄)] = φ(x)T Eα

[
ααT

]
φ(x̄) (12c)

= w2
o φ(x)T φ(x̄) = cov[f(x), f(x̄)] .

Identifying the covariance function with (12c), we see that
the choice of the basis functions is reflected by the covari-
ance function. For the special case φ(x) = x we obtain
cov[f(x), f(x̄)] = w2

o xT x.
The linear model is little flexible and it is hard to argue why

the correlation between function values should increase with
their distance. A common choice is to assume that correlations
between the function values decay exponentially, i.e.

k(x, x̄) = w2
o exp

{
− 1

2

D∑
d=1

(
x(d) − x̄(d)

wd

)2
}

. (13)

Here, it is assumed that function values at close inputs x ≈ x̄
are perfectly correlated, which corresponds to the assumption
that the function is smooth. For large |x − x̄| we obtain
k(x, x̄) ≈ 0, and the function values f(x) and f(x̄) can
be considered independent. It can be shown [24], that the
covariance function in (13) corresponds to an infinite number
of basis functions, which is why we call the model “non-
parametric”.

The parameter wo controls the strength of the correlations,
and the w1 . . . wD are the typical length scales of the individ-
ual input dimensions. We collect the parameters in a vector
θ = (wo . . . wD). In Figure 4 we show random function
samples from a Gaussian process to illustrate the structure of
the model. We have plotted samples for different length scales
to demonstrate how they influence the variability of the GP.

2) Bayesian inference: In the preceding paragraph we have
described the GP prior which encodes our beliefs about the
output f of the computer code. The model is specified by
parameters θ, which, for now, we assume to be fixed.

Assume we are given the results of N simulation runs
D = {(x1, y1) . . . (xN , yN )}, which are possibly corrupted by
noise: y` = f(x`) + ε`. As widely done, we assume that the
noise is normal, i.e. ε ∼ N (ε|0, σ2). These data can now be
used to update the model, to obtain what is called the posterior
distribution.

The posterior process is obtained using Bayes’ rule. It re-
flects our updated knowledge about f , including the remaining
uncertainty. In the regression setup the posterior process is
again a GP, and we can derive an analytic expression for the
predictions at unseen inputs. At each input x∗ the posterior
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predictive distribution is normal

p(f∗(x∗)|D,θ) = N (f∗|m(x∗), v(x∗)) (14a)
with mean m(x∗) = k(x∗)T Q−1y (14b)

and variance v(x∗) = k(x∗,x∗)− k(x∗)T Q−1k(x∗) .

We have defined Q = K + diag[σ2, . . . , σ2], and used
the abbreviations k(x∗) ∈ Rn and K ∈ Rn×n with
[k(x∗)]` = k(x`,x∗) and Ki` = k(xi,x`) . The expressions
(14) can be derived using basic algebra for multivariate
Gaussian distributions, see [24, Chap. 2].

3) Learning the hyperparameters: In the above section we
have introduced GPs with a given covariance function k(x, x̄)
and fixed noise level σ. The involved parameters θ are so-
called hyperparameters. In a correct Bayesian analysis we need
to define an appropriate prior distribution po(θ) and average
over their posterior distribution p(θ|D):

p(f |D) =
∫

dθ p(θ|D) p(f |D,θ) . (15)

As the integral is not analytically tractable we have to resort
to a numerical approximation.

One way to approximate the integral in (15) is to use
Markov Chain Monte Carlo methods, as introduced by [14].
These methods give accurate approximations, but they are
computationally very expensive and not easily handled. The
maximum likelihood (ML) approximation of type two chooses
the maximizer

θ̂ = argmax
θ

[p(D|θ)] (16)

of the marginal likelihood. It is probably the most common
approximation to replace the integral in (15). The method can
be understood as shrinking the posterior distribution p(θ|D)
to a delta distribution at its mode θ̂, thus using an overly
confident estimate. The ML approach is justified for large
sets of training data where p(D|θ) is concentrated around its
mode. MacKay [10] gives a detailed analysis. The marginal
likelihood is given by a closed expression which can be
optimized in a conjugate gradient scheme. Details can be found
in [24, Chap. 5].

In comparison to correct averaging, choosing optimal pa-
rameters has the advantage that these can be used for screen-
ing. Welch et al. [32] describe an ML-type procedure which
optimizes the length scale parameters and uses them to assess
whether input parameters are inactive. This method is known
as Automatic Relevance Determination (ARD), a term coined
by MacKay [9]. The length scales w1 . . . wD are indirect
parameters which have no meaningful physical interpretation.
However, we can easily verify that for

wd � max
j,k

∣∣∣x(d)
j − x

(d)
k

∣∣∣ ∀xj , xk (17)

the influence of the corresponding dimension becomes negli-
gible in the covariance structure (13). The function is therefore
constant along parameter x(d).

Although this screening approach can only roughly capture
the functions’ variability in the input dimensions, GPs can also
be efficiently used to determine the statistical sensitivity mea-
sures: In the following section we derive analytic expressions
for the variance based measures CR, LCR, and CCR.

4) Quadrature using GPs: As we have seen in Section
III-A, Monte Carlo is the method of choice to replace clas-
sical methods for high dimensional quadrature. However, as
O’Hagan [19] argues, MC methods have several drawbacks.

His main argument against MC methods is that only the
function values f(x`) enter the estimate, not the inputs x`

themselves. The Quasi-Monte Carlo methods, which we men-
tioned above, can to some extend relieve this disadvantage by
using efficient sampling schemes. However, the very fact that
the estimate (10) is unbiased implies an inefficient use of the
available information. If we could incorporate prior knowledge
about the function f we would introduce a bias, but could also
use the available information more efficiently.

Gaussian process priors, which we introduced in Section III-
B.1, introduce such prior information by assuming a concept
of smoothness on f . If the prior assumptions do not prove
wrong, we can expect an increase of efficiency in comparison
to the MC methods which only assume square-integrability.

Rasmussen & Ghahramani [23] show how the Bayesian
quadrature, as proposed in [20], can outperform classical
MC. For Sensitivity Analysis Bayesian quadrature has been
proposed by Haylock and O’Hagan [7], [16]. Besides a more
efficient use of the data, the Bayesian approach has the
advantage that the samples do not have to reflect the input
distribution. We can therefore reduce the number of function
evaluations by choosing an optimal design. One may also
study the sensitivity’s dependence on the nominal value x̂
after approximating the function in a larger region of the input
space.

Having computed the posterior process p(f |D, θ̂), we can
estimate mean or variance of the output under p(x) (3) using
the predictive mean m(x) and variance σ2(x) (14b). The
solution involves longish expressions, which we have relegated
to the Appendix. The quadrature problem can be reduced to
integrating products of the input distribution p(x) and the
covariance function. All necessary integrals are summarized
by the following quantities:

kc =
∫

dx p(x)
∫

dx′ p(x′) k(x,x′) (18)

ko =
∫

dx p(x) k(x,x)

z` =
∫

dx p(x) k(x, x`)

Lj` =
∫

dx p(x) k(x, xj)k(x, x`) .

Note that we can also calculate confidence intervals for the
estimated quantities by taking into account the remaining
uncertainty in the posterior process p(f |D).

If we use the common covariance function (13), the integrals
(18) can be calculated explicitly for some input distributions.
For Gaussian input distributions

p(x) = N (x|x̂, B) (19)

we give the solutions in the Appendix (see also [7]).
We can thus calculate mean and variance of px(f) in

closed form, along with their gradients with respect to design
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Fig. 5. Friedman’s benchmark function: Convergence rates for the MC method and the GP-based Bayesian quadrature. Shown are the absolute error of the
estimates for the mean (a), the variance (b) and two CR coefficients (c) against the number of samples. The true values can be calculated exactly and serve
as a reference in all plots. The solid curve in the leftmost plot shows the characteristic error bound of the MC estimate for the mean, O(N−1/2).

parameters and input tolerances. Such gradients can be used
for an efficient optimization to find optimally robust designs.

If the input distribution is factorized into independent factors
p(x) =

∏
` p`(x`), the integrals in (18) break down to a

product of one dimensional integrals. Those are, in contrast
to a full integral of the type (3), relatively easy to handle.
For most non-Gaussian input distributions the integrals cannot
be calculated analytically, but can be approximated efficiently
using the Gauss-Hermite rule for one dimensional quadrature.

The involved integrals can in general not be simplified
and have to be solved numerically. This is the case for the
parametric yield (4). However, having calculated a GP model
based on the available data, we have access to a fast emulation
of the original computer program. We can therefore calculate
a simple Monte-Carlo estimate in the spirit of response surface
methods, using a large number of samples [16].

The results of the above paragraph have been derived for
a GP with zero mean, however, the generalization to nonzero
mean functions is straightforward. Assume we add an offset
µ(x) to the GP prediction m(x) in (14). The expectations over
p(x) decompose to

meanx [m(x) + µ(x)] = Ex [m(x)] + Ex [µ(x)] (20a)
varx [m(x) + µ(x)] = varx [m(x)] + varx [µ(x)] (20b)

+ 2covarx [m(x) , µ(x)] .

Thus, as long as we can compute the integrals over the prod-
ucts of µ(x), p(x) and k(x, ·), it can easily be incorporated
to the analysis. For a polynomial offset in combination with a
Gaussian input distribution p(x) all integrals are analytically
tractable.

IV. EMPIRICAL STUDY OF ACCURACY AND EFFICIENCY

We have argued in Section III-B.4 that the Bayesian Monte
Carlo analysis uses the available information efficiently by in-
corporating prior knowledge, and thus saves simulation effort.
However, hereby we restrict the analysis to cases where the
mapping f , given by the computer code, does not contradict
these prior assumptions. To test the validity of the GP model
we compare the accuracy of BMC and MC dependent on the
number of simulation runs. We use real design problems and
a well-known benchmark problem for nonlinear regression.

The re-usability of data, the separation of simulation and
analysis, and the testability of the results via cross-validation
are major advantages of the regression-based BMC method.
Experimental design, which can only be applied in the
Bayesian approach, can lead to an additional increase in
efficiency [25]. In this section, however, we directly compare
MC and Bayesian MC on identical designs from p(x) to ensure
a fair comparison.

A. Experiments

a) Analytical benchmark, Friedman’s function: As com-
puter models of our electro-mechanical systems are highly
complex, the number of simulation runs which we can perform
is limited. Therefore we additionally use an analytical bench-
mark function to compare the methods on a large number of
samples.

We use a function which was defined by Friedman [6] as
a benchmark problem for regression. It is nonlinear and non-
monotonic, and therefore a challenging problem for Sensitivity
Analysis. The function has 10 input parameters, 5 of them
having an impact on the output. We use a normal input dis-
tribution p(x) = N (x|x̂, B) with mean x̂ = (0, 0, 1

2 , 0 . . . 0)
and covariance B = diag( 1

4 . . . 1
4 ). As we use a symmeterized

version of the original function

f(x) = 10 sin(πx1x2) + 20(x3 − 1
2 )|x3 − 1

2 | (21)
+10x4 + 5x5 ,

we ensure that the mean under p(x) is zero. As all sensitivity
measures can be computed analytically we can compare the
estimates to the true value. In this example we do not add
noise, as this corresponds to the common situation in computer
experiments. Note, however, that the BMC procedure handles
noise automatically.

See Figure 5 for the convergence rates of the Bayesian
Monte Carlo scheme in comparison to the classical MC
method. The plots show the estimates for meanx[f ], varx[f ],
and the CRs against the available number of function eval-
uations. The samples are drawn randomly, and thus the MC
and BMC estimates are different for each repetition. We have
plotted the results for a number of repetitions to illustrate the
accuracy of the estimates.
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Fig. 6. Performance of the BMC and MC methods on the PS model. Shown are the absolute error on the estimated mean (a) and variance (b), and the
estimates for the minimal and maximal CR (c). As reference values we chose the mean of all estimates at 2 · 103 samples.

For both methods we have used identical Latin Hypercube
designs, and therefore the comparison measures exclusively
how efficient the available data is used. The BMC estimate
of the mean and variance (6) using 103 samples is already
as accurate as the MC estimate using 104 samples: This
reduces the number of required simulation runs by a factor
of ten. To calculate sensitivity measures like the CRs, the
MC method requires an estimate for the variance and one
additional MC run per parameter (7). However, even counting
only the complexity of one MC run, BMC is still much more
efficient. The accuracy of the MC approach on CR2 with
105 samples is comparable to BMC using only 1% of the
samples. CR7—the input x7 does not affect the output—is
correctly identified to be zero on only 102 samples by the
screening (ARD) capability of the GP, while the MC estimate
only stabilizes around 105 samples.

b) The PS model: For the analytical example we have
tested the methods on a large number of runs with up to 106

samples. Evidently, due to limited computational resources, we
need to restrict the number of simulation runs on tests using
the PS model. Find the results in Figure 6.

Our experiments show that BMC clearly outperforms the
MC approach on this high dimensional sensor model. From the
plots we can read that BMC estimates the mean as accurate as
MC on 2 000 samples, using only 25% of the simulation runs.
For the variance estimate this fraction is as low as 10%. The
correlation ratios are apparently accurate within a few percent
for the largest, as well as the for the smallest coefficient, using
only 500 random samples. Note that we did not calculate the
CRs using the MC method as this would have required an
extra MC run per parameter.

c) Model 2, Accelerometer: Our second simulation code
models the behavior of a micro electro-mechanical accelerom-
eter which is used to trigger airbags or other automotive appli-
cations. The model has 29 parameters which show variations in
the manufacturing process. The predictions of the GP model,
trained on 300 points, lead to a root mean square error of 3.7%
on an independent test set of 4 700 instances, relative to the
test set’s standard deviation.

It turns out that this model is dominated by linear effects,
as indicated by the Sensitivity Analysis shown in Figure 7.
The estimate of varx[f ] converges much slower for the MC
method than the BMC scheme: On 50 training instances BMC

is as accurate as MC on 500 samples. Both methods, however,
perform comparably in estimating the meanx[f ]. This gap
can be explained by the great linearity of the model. Due to
linearity, all effects caused by a deviation from the nominal
value cancel in the mean estimate, and effectively we only
need to estimate the offset f(x̂). The MC method is here
as efficient as the Bayesian approach. When we turn to the
variation and the CRs, BMC can again profit from prior
assumptions and shows extremely good estimates on only 50
samples.

B. Discussion
In the preceding empirical study we have compared

Bayesian Monte Carlo to the traditional MC method for Sen-
sitivity Analysis. We have focused on the accuracy which can
be obtained using a limited number of simulation runs. As the
implementation of the Monte Carlo method is much simpler
than the proposed BMC scheme, it is certainly to be preferred
when the models can be evaluated at low computational cost.
When we consider complex models, however, the number of
function evaluations is crucial.

We have used two computer models from the design process
of MEMS and an analytical, nonlinear benchmark test to
compare MC and BMC. The comparison on identical data
sets showed that the BMC estimates require significantly
less function evaluations than the MC method. This holds
especially for the sensitivity measures and the output variation.

The increase in efficiency is based on the prior assumption
of smooth behavior, which proves correct for the presented
systems. In case of deflection from the prior assumption—
e.g. for discontinuous functions—the BMC scheme cannot be
applied. Such a case, however, can be detected when the meta-
model is tested using e.g. cross validation.

V. SYNOPSIS

Fluctuations in the production process can have a substantial
influence on the performance of integrated systems. A good
design is characterized by its robustness with respect to these
process-tolerances. Computer models can replace test runs in
the design analysis, and can be used to study the characteristics
of the system as design parameters are changed.

In high dimensional models one can no longer understand
the influence of parameters by plotting projections to one
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Fig. 7. Results for the accelerometer model. Shown are the Sensitivity Analysis (a), the estimated mean and variance (b), and the estimates for the minimal
and maximal CR (c). The Sensitivity Analysis shows a linear behavior except in P36. It turns out that MC and BMC have similar convergence properties
in the estimate of meanx[f ], while the output variation varx[f ] given by BMC converges much faster than the MC estimate. The CRs show little variation
after roughly 300 samples.

or two axes. We define a number of statistically justified
sensitivity measures to provide a compressed representation:
In comparison they let the designer understand the impact of
parameters, the degree of nonlinearity of the model, as well
as the interaction of inputs.

Output fluctuations are traditionally assessed using Monte
Carlo methods, where the parameters’ distributions are em-
ulated by a finite number of random samples. Monte Carlo
is attractive by virtue of its simplicity and universal usabil-
ity, however, it might not be feasible for computationally
demanding models. We use a Bayesian approach based on
nonparametric Gaussian process regression to make efficient
use of available simulations runs. The sensitivity measures
are calculated from the Gaussian process in closed form. The
results can therefore be guaranteed to be as accurate as the
tested regression model.

We have used two high-dimensional computer models of
MEMS to demonstrate the effectiveness of the proposed
method. In a case study we discuss the structure of one of
the models to elucidate the proposed design analysis. We
have thoroughly compared the convergence properties of our
approach to MC. The analysis shows that the proposed BMC
scheme can estimate the output variation as accurate as the
MC method on only 10% of the number of simulation runs.

The BMC scheme separates the computer model from
the design analysis, and—in contrast to the MC method—
the inputs do not have do resemble the input distribution.
We can therefore choose an optimal sampling scheme using
experimental design. Also, we can scan a larger region of the
input space instead of restricting the analysis to one setting
of design parameters. Once the meta-model is trained, the
designer can repeat the analysis for several settings nearly
instantaneously, and the robustness of the design can be
maximized automatically.

APPENDIX
MEAN AND VARIANCE FOR BAYESIAN MONTE CARLO

In the following paragraph we specify the estimates for the
mean and variance of the output f under the input distribution
p(x) when a Gaussian process prior is used. The estimate for
the mean is simply the average over the predictive mean, as

the expectations Ef |D and Ex can be swapped:

Ef |D

[
Ex[f ]

]
= Ex

[
m(x)

]
=

∫
dx p(x) m(x) (22a)

=
∫

dx p(x) k(x)T Q−1y = zT Q−1y ,

where we have used the definition of the mean m(x) from
(14b) and the abbreviation z from (18). The estimate of the
variance implies also the predictive uncertainty, and we need
to decompose it into three terms (see also [17]):

Ef |D

[
varx[f ]

]
= varx

[
Ef |D[f ]

]
+ Ex

[
varf |D[f ]

]
−varf |D

[
Ex[f ]

]
. (22b)

If the GP model perfectly fits the function f and the predictive
variance is zero, the sum reduces to the variance over the
predictive mean:

varx
[
Ef |D[f ]

]
= varx

[
m(x)

]
(22c)

=
∫

dx p(x)
(
k(x)Q−1y

)2 − Ex[m(x)]2

= trace
[
(Q−1y)(Q−1y)T L

]
− Ex[m(x)]2 ,

where L is defined by (18). Due to finite predictive uncertainty
we obtain the following two contributions:

Ex

[
varf |D[f ]

]
= Ex

[
σ2(x)

]
(22d)

=
∫

dx p(x)
[
k(x,x)− k(x)T Q−1k(x)

]
= ko − trace[Q−1L]]

varf |D

[
Ex[f ]

]
= Ef |D

[(
Ex[f ]− Ef |D [Ex[f ]]

)2
]

(22e)

=
∫

dx p(x)
∫

dx′ p(x′) Ef |D

[ (
f(x)− Ef |D [f(x)]

)
×

(
f(x′)− Ef |D[f(x′)]

) ]
=

∫
dx p(x)

∫
dx′ p(x′) covf |D [f(x), f(x′)]

=
∫

dx p(x)
∫

dx′ p(x′)
[
k(x,x′)− k(x)T Q−1k(x′)

]
= kc − zT Q−1z ,
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where ko and kc are defined in (18). Note that the last term is
identical to the predictive uncertainty for the mean-estimate.

When the common quadratic exponential covariance func-
tion (13) is used, the integrals can be solved in closed form
for Gaussian input distributions p(x) (19), and we obtain

ko =
∫
dx p(x) k(x,x) = w2

o (23)
kc =

∫
dx p(x)

∫
dx′ p(x′) k(x,x′)

= w2
o

∣∣2A−1B + I
∣∣− 1

2

z` =
∫
dx p(x) k(x,x`)

= w2
o(2π)

d
2 |A|

1
2

∫
dx N (x|x̂, B)N (x|x`, A)

= w2
o|A−1B + I|−

1
2

× e−
1
2

[
(x`−x̂)T (A+B)−1(x`−x̂)

]
Lj` = w4

o|2A−1B + I|−
1
2 (24)

× e
− 1

2

h
(xj−x`)

T 1
2A−1(xj−x`)

i

× e
− 1

2

»
(x̄`j−x̂)T

h
1
2A+B

i−1
(x̄`j−x̂)

–
with x̄`j = 1

2 (x` + xj) ,

where we have defined A = diag{w2
1 . . . w2

D}. The mean and
the covariance matrix of the input distribution are denoted by
x̂ and B.
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